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As ultralarge-scale integrated (ULSI) circuits are re-
duced in size to deeper submicron dimension, sig-
nal propagation delay, crosstalk, and power consump-
tion are greatly increased due to parasitic capacitance
and resistance. Accordingly, in order to improve the
performance of ULSI devices, there is a strong de-
mand for low-k intermetal dielectric materials (k =
2.6–2.9) instead of SiO2 that has been conventionally
used. However, in the process of moving toward the
low-k materials scheme, manufacturers have identified
new integration challenges. One significant challenge
involves photoresist (PR) ashing process which nor-
mally uses the O2 plasma. The O2 plasma oxidizes
low-k material and makes an SiO2-like layer which
is called the “damage” layer [1–5], causing the in-
crease of the dielectric constant and the leakage cur-
rent. In this paper, we report the characteristics of the
PR ashing process using N2/Ar plasma. We have inves-
tigated the ashing damage of low-k material by the HF-
dipping technique. To the best of our knowledge, this
is the first report on the application of N2/Ar plasma
to the PR ashing with respect to the low-k material
scheme.

The equipment used in this study is an ICP-type
etcher with a ferrite-core. Several researchers have stud-
ied the properties and applications of the ferrite-core
[6–8]. Although the detailed study is underway [9], the
installed ferrite-core is expected to help obtaining a
higher plasma density by providing the magnetic field
energy, compared to that of the conventional ICP. Dur-
ing the ashing process, the source power was 6000 W
with a frequency of 400 kHz, the pressure was 1.1 Torr,
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and the bias power (13.56 MHz) was 400 W. The sil-
icon substrates were coated with a 4000 Å-thick layer
of low-k materials (SiOCH) with the as-deposited di-
electric constant of 2.8, by the chemical vapor depo-
sition method. The film degradation was evaluated by
treating with 50% aqueous HF solution for 5 s. Imme-
diately after the HF dipping, the samples were dipped
and rinsed in deionized water. Only a part of the ashed
samples was soaked into the HF solution and subse-
quently alpha-step profilometer was used to measure
the difference of film height between the soaked and
the unsoaked regions.

Fig. 1 shows the changes of photoresist (PR) ashing
rate and low-k material etching rate with varying the
N2/(N2 + Ar) gas flow ratio in the range of 0–1, re-
vealing that PR ashing rate increases with increasing
the N2/(N2 + Ar) gas flow ratio. Although we surmise
that the reduction of the ashing rate by increasing the
Ar/(N2 + Ar) gas flow ratio is due to chemical inert-
ness of Ar with the PR mask, further systematic inves-
tigation is necessary. We observe that the etching rate
of low-k material is less than 100 Å, regardless of the
N2/(N2 + Ar) gas flow ratio. Fig. 2 shows that the PR to
low-k material etch selectivity increases with increas-
ing the N2/(N2 + Ar) gas flow ratio and the selectivity
is higher than 10 at the N2/(N2 + Ar) gas flow ratio in
the range of 0.25–1.

Since the damaged layer is the region where the
Si CH3 and C H bonds have been broken and thus was
changed to the SiO2-like material, it is easily etched by
the HF solution, while the original low-k material is not.
Therefore, the decreased thickness by the HF dipping
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Figure 1 Variation of the PR ashing rate and the low-k material etching
rate with varying N2/(N2 + Ar) gas flow ratio.

Figure 2 Variation of PR to low-k material etch selectivity with varying
N2/(N2 + Ar) gas flow ratio.

Figure 3 Decreased thicknesses of the low-k material films by the HF
dipping treatment, depending on the previous ashing process with vary-
ing the N2/(N2 + Ar) gas flow ratio.

is close to the thickness of the damaged layer [5].Fig. 3
shows the decreased thicknesses of the low-k material

films by the HF-dipping treatment (i.e. the difference
of low-k material film thickness before and after the HF
dipping) depending on the previous ashing process with
varying N2/(N2 + Ar) gas flow ratio. The decreased
thicknesses of the samples after the HF-dipping, which
were previously ashed with the N2/(N2 + Ar) gas flow
ratio of 0, 0.25, and 0.75, respectively, are measured to
be approximately 150, 500, and 690 Å. Accordingly,
we surmise that the ashing damage decreases with in-
creasing the Ar/(N2 + Ar) gas flow ratio. Although the
N2 plasma is known to generate the smaller degradation
of the low-k film than the conventional O2 plasma does
[5], we reveal that the Ar plasma is even more effective
in reducing the ashing damage, possibly due to the in-
ertness of Ar species with regard to CH3 groups in the
low-k material.

In summary, we studied the PR ashing using N2/Ar
gas in an ICP. We reveal that both the PR ash rate and
the PR to low-k material etch selectivity increase with
the increasing N2/(N2 + Ar) gas flow ratio. The HF-
dipping treatment indicates that the ashing damage in-
creases with the increasing N2/(N2 + Ar) gas flow ra-
tio. Therefore, we suggest that the N2/(N2 + Ar) gas
flow ratio in the ashing process should be optimized
by considering both the ashing rate and the ashing
damage.
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